A) Quintet
symmetry:C2V [1-A1; 2-B1; 3-B2; 4-A2]; CASSCF(4, 9)
{casscf
close,8,3,3,0
occ,12,5,5,1
wf,32,4,4;state,10
wf,32,1,4;state,10
wf,32,2,4;state,10
wf,32,3,4;state,10
natorb,ci,print}
A1: close [for 8 pairs] : 1s [V]; 2s[V]; 1s[O]; 2py[V]; 3s[V]; 3py[V]; 2s[O]; O-H sigma bond (2py-O:1s-H)
A1: [9-12] : 9-[d2+(V): dx2-y2:-0.206947]; 10-[d0(V): dz2: -0.207388]; 11-[4s(V): -0.207217]; 12-[4py(V): -0.087493]
B1: close [3 pairs] : 2px[V]; 3px[V]; 2px[O]
B1: [4-5]: 4-[3d2-(V):dxy:-0.209038]; 5-[4px(V): -0.12012]
B2: close [3 pairs] : 2pz[V]; 3pz[V]; 2pz[O]
B2:[4-5]:4-[d1-(V):dxz: -0.199839]; 5-[4pz(V): -0.111116]
A2: close 0
A2: 1-[3d1+(V):dyz: -0.218392]
B) Triplet
If calculating the triplet state only including the electronic state or configuration state with spin=2, then we can not get the correct active space in which the active orbitals are: the five 3d orbital,one 4s orbital, and three 4p orbital of vanadium
Only if we combine the spin=4 configuration state (quintet state) to calculate the triplet state, then we can get the correct active space.
Geometry={
4
V+(H2O)-t.dat
V 0.00000000 0.00000000 0.66236305
O 0.00000000 0.00000000 -1.40863240
H 0.00000000 0.77937774 -1.98264542
H 0.00000000 -0.77937774 -1.98264542
}
spherical
basis=cc-pvtz
{casscf
close,8,3,3,0
occ,12,5,5,1
wf,32,1,4;state,6
wf,32,2,4;state,6
wf,32,3,4;state,6
wf,32,4,4;state,6
wf,32,1,2;state,6
wf,32,2,2;state,6
wf,32,3,2;state,6
wf,32,4,2;state,6
natorb,ci,print}
{rs2,shift=0.3,thrvar=1.0d-8,thrden=1.0d-8;maxit,100;
wf,32,1,4
state,1,1}
{rs2,shift=0.3,thrvar=1.0d-8,thrden=1.0d-8;maxit,100;
wf,32,4,4
state,1,1}
{rs2,shift=0.3,thrvar=1.0d-8,thrden=1.0d-8;maxit,100;
wf,32,1,2
state,1,1}
{rs2,shift=0.3,thrvar=1.0d-8,thrden=1.0d-8;maxit,100;
wf,32,4,2
state,1,1}
put,molden,test1.molden
---
A) Triplet
B) Singlet
V+OH:
A) Quartet
B) Doublet
V+(H2O)2:
A) Quintet
Symmetry :D2h : 1-Ag; 2-B3u; 3-B2u; 4-B1g; 5-B1u; 6-B2g; 7-B3g; 8-Au CASSCF(4, 9)
1Ag: close [for 6 pairs] : 1s [V]; 2s[V]; 1s[O]; 3s[V]; 2s[O]; 2pz(O)-1s(H) [sigma bond]
1Ag[7-9]
7-[4s(V)+3d0:3dz2(V)]; 8-[3d2+:3dx2-y2(V)]; 9-[3d0:3dz2(V)];
2B3u: close [3 pairs] : 2px[V]; 3px[V]; 2px(O)-1s(H) [sigma bond];
2B3u: [4]
3B2u: close [3 pairs] : 2py[V]; 3py[V]; 2py(O) [lone pair]
3B2u: [4]
4B1g: close 0
4B1g: 1-[3d2-:3dxy(V): -0.204883]
5B2u: close [5 pair]: 1s[O]; 2pz[V]; 3pz[V]; 2s[O]; 2pz[O]-1s[H] [sigma bond]
5B2u[6]
6B2g: close [1pair]: 2px[O]-1s[H] [sigma bond]
6B2g:[2]
2-[3d1+:3dxz(V):-0.171353]
7B3g: close [1 pair] 2py[O] [lone pair]
7B3g:[2]
2-[3d1-:3dyz(V):-0.133280]
8Au: close [0 pair]
B) Triplet : D2H
1Ag[close 6]: 1s[V]; 2s[V]; 1s[O]; 3s[V]; 2s[O]; sigma O-H [2pz(O)-1s(H)]
7-
2B3u[close 3]: 2px[V]; 3px[V]; sigma O-H [2px(O)-1s(H)]
3B2u[close 3]: 2py[V]; 3py[V]; non bond [2py(O)]
4B1g[close 1]: 1-[d2-:dxy]
5B1u[close 5 ]: 1s[O]; 2pz[V]; 3pz[V]; 2s[O]; sigma O-H [2pz(O)-1s(H)]
6B2g[close 1]: sigma O-H [2px(O)-1s(H)]
7B3g[close 1]: non bond [2py(O)]
8Au[close 0]
V+(H2O)3
A) Quintet : Symmetry Cs: A'; A''
1A'[close 19]
1-1s[V]; 2-2s[V]; 3-1s[O1]; 4-1s[O3]; 5-1s[O2]; 6-2py[V]; 7-2px[V]; 8- 3s[V]; 9-3py[V]; 10-3px[V]; 11-2s[O1]; 12-2s[O3]; 13-2s[O2]; 14-sigma bond [2px(O1)-1s(H1)]; 15-sigma bond []
2A''[close 5]